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In terms of the Voronoi–Dirichlet partition of the crystal

space, definitions are given for such concepts as ‘void’,

‘channel’ and ‘migration path’ for inorganic structures with

three-dimensional networks of chemical bonds. A number of

criteria are proposed for selecting significant voids and

migration channels for alkali cations Li+–Cs+ based on the

average characteristics of the Voronoi–Dirichlet polyhedra for

alkali metals in oxygen-containing compounds. A general

algorithm to analyze the voids in crystal structures has been

developed and implemented in the computer package

TOPOS. This approach was used to predict the positions of

Li+ and Na+ cations and to analyze their possible migration

paths in the solid superionic materials Li3M2P3O12 (M = Sc, Fe;

LIPHOS) and Na1 + xZr2SixP3 � xO12 (NASICON), whose

framework structures consist of connected M octahedra and

T tetrahedra. Using this approach we determine the most

probable places for charge carriers (coordinates of alkali

cations) and the dimensionality of their conducting sublattice

with high accuracy. The theoretically calculated coordinates of

the alkali cations in MT frameworks are found to correlate to

within 0.33 Å with experimental data for various phases of

NASICON and LIPHOS. The proposed method of computer

analysis is universal and suitable for investigating fast-ion

conductors with other conducting components.
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1. Introduction

Traditionally, analysis of the geometry and (to a smaller

extent) the topology of atomic three-dimensional nets (Wells,

1986) has attracted much attention in inorganic crystal

chemistry. At present, computer methods allow similar

investigations for ‘empty’ (containing no atoms) crystal space

considering the geometrical–topological properties of cavities

and channel networks (Thomas, 1991; Adams & Swenson,

2002; Blatov & Shevchenko, 2003; Blatov et al., 2005; Foster et

al., 2006; Küppers et al., 2006). The properties of the ‘empty’

crystal space are important in many crystallochemical tasks

and physical applications. The equivalent concept of excluded

volume is well known in solid-state physics, enabling the

migration paths for mobile ions to be modelled, for instance,

in framework fast-ion conductors. Analysis of electron-density

distributions in various superionic conductors shows that

mobile particles easily migrate through the whole crystal,

except the volume occupied by the framework ions (excluded

volume). In the crystalline matrix a connected conducting

space may be separated that consists of cavities, where ions are

located for a long period of time, and of migration channels

connecting the cavities. The geometrical properties of the



‘empty’ crystal space allow the study of the energetic pecu-

liarities of the material responsible for the anomalously high

ionic (superionic) conductivity (Hong, 1976):

(i) the number of energetically equivalent positions has to

be larger than the number of mobile ions;

(ii) the ion-disordering energy and the energy of ion motion

have to be small in comparison with the kT magnitude that,

together with the first condition, leads to a random distribu-

tion of mobile ions over acceptable Wyckoff positions (voids).

Topologically the ‘empty’ crystal space has to possess an

infinite network of channels to provide the ion migration

through the material.

The geometrical–topological analysis of the ‘empty’ crystal

space can be performed by various modifications of the ‘grid’

methods (Thomas, 1991; Adams & Swenson, 2002; Küppers et

al., 2006), by constructing the Voronoi–Dirichlet partition

(Niggli, 1927; Fischer, 1986; Blatov & Shevchenko, 2003) or

the dual Delaunay partition (Foster et al., 2006). The main

restrictions of the ‘grid’ methods are:
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Figure 1
(a) The Shubnikov plane net 3464 (grey balls) and the corresponding net of voids (black balls). (b) Four VDPs meeting in the same vertex (red ball) in a
b.c.c. (body-centred cubic) lattice. (c) The form of an elementary void in the NaCl crystal structure. All environmental atoms and one void are yellow; Rsd

= 1.38 Å, G3 = 0.07854. (d) A major elementary void (ZA) in the NaCl crystal structure. VDPs of Na and Cl ions are selected. (e) A minor void (ZC6)
located outside the tetrahedron of the yellow atoms O1, O5, O6 and O12 determining this void in the crystal structure of �-Li3Sc2P3O12. All distances
from ZC6 to the O atoms are equal to 2.298 Å.

(i) they ordinarily use the ‘spherical-atom’ model and the

atomic radii must be dependent on the nature of the chemical

bonding;

(ii) the precision of their results depends on the grid density.

For instance, this model leads to ‘cusp’ areas appearing around

the cavity (Küppers et al., 2006). The Voronoi–Dirichlet

approach seems to be more useful because many parameters

of the atomic Voronoi–Dirichlet polyhedra (VDP) have a

clear physical meaning (Blatov, 2004). Also the Voronoi–

Dirichlet partition naturally maps onto the system of cavities

and channels (Fischer, 1986). It is the polyhedral representa-

tion that closely conforms to the real shape of an atom in the

non-spherical crystal field (Zou & Bader, 1994; Blatov, 2004).

Moreover, this representation naturally results in two inter-

penetrating three-dimensional graphs; graphs of atomic and

void nets, whose nodes symbolize atoms and void centres, and

whose edges correspond to the interatomic bonds and possible

channels, respectively. The usefulness of this approach has

been known for some time (Niggli, 1927; Fischer, 1986), but it

has only been applied to some simple and high-symmetry

structures. Recently it was implemented in the computer

package TOPOS and successfully used to study microporous

crystal structures of various types (Blatov & Shevchenko,

2003; Blatov et al., 2005). However, the

main focus was on the analysis of

cavities; the possibility of analyzing the

connecting channels was hardly

mentioned.

In this work we consider in detail the

basic problems of applying the Voronoi–

Dirichlet partition to the analysis of solid

superionic materials, using the ex-

ample of the framework structures of

Na3Zr2Si2PO12 (NASICON) and



Li3M2P2O12 (LIPHOS; M = Sc, Fe), which consist of connected

M octahedra and T tetrahedra. The main goals were to define

the selection criteria for significant cavities and channels, and

to determine the most probable positions of the alkali cations

together with their migration paths. We also intended to

evaluate the predictability of the method by comparing the

generated models of channel systems with the data of X-ray

experiments and conductivity measurements for a number of

superionic conductors.

2. Terminology and general principles of analyzing
cavities and channels

The basic concepts used to describe the cavities and channels

in terms of the Voronoi–Dirichlet partition are elementary

voids and elementary channels. Recall that the Voronoi–

Dirichlet partition is a normal (face-to-face) partition of

crystal space by VDPs, i.e. by the polyhedra constructed

around atoms in such a way that each internal point of a VDP

is closer to the internal atom than to other atoms. All the VDP

vertices and edges in the Voronoi–Dirichlet partition form a

three-dimensional graph: the Voronoi–Dirichlet graph (cf.

Fischer, 1986).

2.1. Properties and classification of elementary voids

The elementary void is a region of crystal space with its

centre on a vertex of an atom VDP. The atoms whose VDPs

meet in the centre of a given elementary void are referred to

as atoms determining the elementary void; these atoms are

equidistant to the void centre. The properties of elementary

voids are mainly determined by the features of the Voronoi–

Dirichlet partition.

(i) In a two-dimensional net the centre of an elementary

void is surrounded by no less than three noncollinear atoms at

the same distances (Fig. 1a). In the three-dimensional case the

elementary void is equidistant to at least four noncoplanar

atoms (tetrahedral void) since in a three-dimensional

Voronoi–Dirichlet partition no less than four VDPs meet in

the same vertex (Fig. 1b).

(ii) Besides the atoms determining the elementary void,

there are additional atoms at longer distances that can

strongly influence the geometrical parameters of the elemen-

tary void, in particular, its size and shape. To find these

parameters one should construct the void VDP, taking into

account all atoms and other symmetrically equivalent

elementary voids (Fig. 1c). Let us name the atoms and voids

participating in the VDP formation environmental. Obviously,

the atoms determining the elementary void are always envir-

onmental. Thus, in the crystal structure of NaCl all environ-

mental ions determine the elementary void (Fig. 1c).

Physically, the void VDP reflects the size and shape of an atom

that could occupy the void, which is in contact with all the

environmental atoms. Since other equivalent elementary voids

would also be occupied in this case, they form the void VDP

along with environmental atoms.

(iii) The radius of the elementary void (Rsd) is the radius of

the sphere, whose volume is equal to the volume of the void

VDP which is constructed taking into account all the envir-

onmental atoms and voids. Physically, the radius of the

elementary void corresponds to the radius of an atom that can

be located in the void under the influence of the crystal field

distorting the spherical shape of the atom. Let us emphasize

that this parameter is used only to characterize the void

volume; it does not mean that the void is considered to be

spherical. In the Voronoi–Dirichlet approach the voids (and

atoms) have polyhedral shape and fill the whole space, which

is in contrast to the model of the spherical atom used in the

‘grid’ methods (Thomas, 1991; Küppers et al., 2006).

(iv) The shape of the elementary void is determined by the

void VDP which is constructed with all the environmental

atoms and voids (Fig. 1c). It is estimated to be the dimen-

sionless-normalized second moment of inertia of the VDP

(G3). The more spherical the elementary void, the lower the

G3 value; the sphere has a minimum G3 value of 0.07697. We

assume that an elementary void is essentially distorted if G3 >

0.10. The distorted voids are hardly accessible even though

they are a reasonable size.

There are two kinds of elementary void: major, if its centre

is located inside the polyhedron, whose vertices coincide with

the atoms determining the elementary void (for instance,

inside the tetrahedron for a tetrahedral void, Fig. 1b, or inside

the cube in the NaCl crystal structure, Fig. 1d); and minor, if its

centre lies outside or on the boundary of the polyhedron (Fig.

1e).

The physical sense of the major elementary voids means

that they usually correspond to real cavities and cages in

framework structures. Minor elementary voids often corre-

spond to transition regions between cavities, for instance, to

channel necks.

2.2. Properties and classification of elementary channels

The elementary channel is a space belonging to two

elementary voids; the channel connects the voids and corre-

sponds to a VDP edge; the VDP refers to an atom determining

either of the voids. Such an edge is termed a line of the

elementary channel. Accordingly, the atoms determining the

elementary channel are those atoms whose VDPs have a

common edge coinciding with the channel line (Fig. 2a). The

properties of elementary channels are similar to the properties

of elementary voids.

(i) Generally speaking, each elementary channel is deter-

mined by at least three noncollinear atoms, since in the

Voronoi–Dirichlet partition each VDP edge is shared by no

less than three VDPs. The plane passing through these atoms

is perpendicular to the line of the elementary channel (Fig.

2a).

(ii) The section of the elementary channel is a polygon

whose vertices are the atoms determining the channel; the

section always corresponds to the narrowest part of the

channel. The line of the elementary channel is always
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perpendicular to its section; ordinarily, the channel section and

the channel itself are triangular (Figs. 2a and b).

(iii) The radius of the elementary channel section is esti-

mated to be the geometric mean for the distances from the

barycentre of the elementary channel section to the atoms

determining the channel. In fact, the radius corresponds to an

average distance from the centres of the atoms surrounding

the channel to the centre of an atom passing through it. An

atom can freely pass through the channel if the sum of its

radius and the average radius of the atoms determining the

channel does not exceed the channel radius.

(iv) The length of the elementary channel is the distance

between the elementary voids connected by the channel, i.e. is

the length of the corresponding VDP edge.

An elementary channel can be of two types: (i) major if its

line intersects its section (Fig. 2a) and (ii) minor if the line and

section have no common points, or one of the line ends lies on

the section (Fig. 2b).

With respect to the ion-transport processes in fast-ion

conductors, the major elementary channels correspond to the

most spacious parts of the real migration channels; the minor

elementary channels ordinarily connect the major elementary

channels and relate to the bends of the migration paths.

2.3. Terminology for the systems of elementary voids and
channels

The following terms define the properties of the systems of

elementary voids and channels.

(i) The ‘significant’ elementary void and the ‘significant’

elementary channel are accessible voids and channels for

mobile particles within the scope of a given task. In the

present work the cationic conductors are studied and the

elementary voids and channels which are accessible for cations

are assumed to be significant. If the superionic conductors

with anionic conductivity, molecular sieves or other substances

with different mobile particles are under consideration, then

an additional definition of the ‘significance’ is required. Only

significant voids and channels are important in the analysis of

superionic conductors; other elementary voids and channels

should be ignored. Significant voids and channels are referred

to as probabilistic if the migration of particles through them is

not forbidden, but is hindered for some reason. The criteria

for determining probabilistic voids and channels depend on

the problem to be solved.

(ii) The migration channel for mobile particles is a set of

significant elementary voids and elementary channels

connecting the voids. The passage defined in this way provides

charge transport in fast-ion conductors. If the migration

channel contains no probabilistic elementary voids and

channels, the ion transport is not bottle-necked and a high

ionic conductivity can be expected at the temperature of the

structural experiment; otherwise the conductivity is at a high

temperature.

(iii) The migration path of mobile particles is a set of

elementary void centres and channel lines which compose the

migration channel (cf. Fischer, 1986). Thus, the migration path

unambiguously corresponds to a migration channel and is a

graph whose vertices and edges correspond to elementary

void centres and elementary channel lines. To provide

conductivity, the migration path has to be infinite (one-

dimensional, two-dimensional or three-dimensional), other-

wise the mobile ions will be located in finite zero-dimensional

cages. Thus, the infinite migration paths are of special interest

in the analysis of the electrical properties of superionic

conductors. Obviously, an infinite migration path has to be

formed by the elementary voids being incident to at least two

elementary channels, otherwise the elementary void would be

a dead end in the migration path, or even isolated.
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Figure 2
(a) Section of a triangular major elementary channel in the crystal structure of �-AgI. The channel line is red. The atoms determining the channel are at
the vertices of the triangular section. The channel line intersects the section in the black ball. (b) Fragment of the channel system in the crystal structure
of �-Li3Sc2(PO4)3. The line of a minor elementary channel is red, the O atoms determining this channel are yellow. Other minor elementary channels are
shown by dashed lines. The line does not intersect the shaded triangular section.



(iv) All migration paths form a conduction pattern of the

substance (cf. Fischer, 1986). The dimensionality of the

conduction pattern determines the dimensionality of the

conductivity (one-dimensional, two-dimensional or three-

dimensional).

2.4. Computer implementation of the method

The Voronoi–Dirichlet approach has been implemented in

the program package TOPOS (Blatov, 2004) for multipurpose

crystallochemical analysis. The program Dirichlet, a part of the

package, provides the following operations:

(i) constructing VDPs for all the independent framework

atoms, i.e. a Voronoi–Dirichlet partition of the crystal space

(interstitial particles including mobile ions are omitted);

(ii) determining the coordinates for all the independent

vertices of atomic VDPs and, as a result, the coordinates of all

the elementary voids;

(iii) determining all the independent VDP edges and, hence,

all the elementary channels;

(iv) calculating the numerical parameters of

the elementary voids and channels.

Information on the resulting conduction

pattern is stored as a three-level adjacency

matrix of the Voronoi–Dirichlet graph (Fig. 3).

The first level contains information on a

reference elementary void. A major elementary

void is designated as ZA, a minor one is marked

as ZB or ZC if it lies on the boundary or outside,

respectively, the polyhedron of the atoms

determining the void. The void radius (Rsd, Å)

and second moment of inertia of its VDP (G3) are also shown.

The second level gives information on other elementary

voids connected to the reference void by channels, and on the

environmental atoms. Every elementary void is characterized

by the length (R, Å) of the elementary channel connecting it

to the reference void, by the number of channel atoms (Chan)

and by the channel radius (Rad, Å). If a channel is major, the

text is marked as bold, otherwise a normal font is applied.

Every environmental atom of the central void is characterized

by the distance to the void centre (R, Å), and by the solid

angle of the corresponding VDP face (SA as a percentage of

4� steradian); the greater the SA, the more significant the

atom–void contact.

The third level contains information on the atoms deter-

mining the channel; the distances between the atoms and the

centre of the channel section are also given.

A number of factors should be taken into account when

determining the significant elementary voids and channels in

solid electrolytes with cationic conductivity. An elementary

void is significant if:

(i) it is determined only by anions (for instance, by O or I

atoms);

(ii) the void radius and G3 value conform to the average

values for the cations (Table 1).

Obviously, if the void radius is greater than the radius of the

cation, the void can store the cation. Moreover, if the G3 value

for the void is smaller or slightly greater than the G3 value for

the cation, the void is suitable by shape. If the value of G3 is

large (G3 > 0.1), the void can only be a transfer point in a

migration channel, i.e. is probabilistic. Besides, the environ-

mental atoms of the void must be considered; the most

significant voids have a purely anionic environment. If there

are cations with SA > 5% in the environment, such a void

cannot store cations permanently, even if it has a suitable

volume and G3 value. However, it can also serve as a transfer

point, i.e. is probabilistic.

An elementary channel is significant if:

(i) it is only determined by anions, and

(ii) its radius is similar to a typical cation–anion distance

(Rca).

As in the case for voids, the first condition is unambiguous and

determines the principal possibility of passing the cation

through the channel; the channel radius characterizes the

migration obstacles and is related to the migration energy. If

Rca is 10% or more greater than the channel radius, the

channel is probabilistic.
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Figure 3
A TOPOS window containing the information on the adjacency matrix of
the Voronoi–Dirichlet graph for �-AgI.

Table 1
Average geometrical parameters of VDPs for alkali and alkaline-earth cations (Blatov,
2004).

Atom VVDP (Å3) Rsd (Å) G3 � 103 Atom VVDP (Å3) Rsd (Å) G3 � 103

Li 11.1 (1) 1.38 (1) 89.1 (6) Be 7.3 (1) 1.20 (1) 99.8 (5)
Na 15.2 (1) 1.54 (1) 84.5 (1) Mg 9.3 (1) 1.30 (1) 84.4 (2)
K 20.8 (1) 1.70 (1) 81.9 (1) Ca 13.3 (1) 1.47 (1) 83.0 (1)
Rb 23.4 (2) 1.78 (1) 81.1 (2) Sr 15.7 (1) 1.55 (1) 81.5 (2)
Cs 27.7 (2) 1.88 (1) 80.8 (2) Ba 18.6 (1) 1.64 (1) 80.6 (1)



3. Examples of the analysis

Below we consider how the method is applied to the study of

ionic conductivity in some typical superionic conductors. In all

the cases studied the alkali cations were removed from the

structure before constructing the voids and channels.

3.1. NASICON Na4Zr2(SiO4)3

A high ionic conductivity in the Na1 + xZr2SixP3 � xO12

NASICON (NA-SuperIonic CONductor) phases was revealed

by Hong (1976) when studying the NaZr2(PO4)3–

Na4Zr2(SiO4)3 system. The conductivity of the Na3Zr2PSi2O12

material was found to be similar to sodium �-alumina and is of

great interest in the NASICON family.

The NASICON crystal structure is based on a three-

dimensional [M2T3O12]1 framework consisting of [MO6]

octahedra and [TO4] tetrahedra. All the O atoms are bridges

between the octahedra and tetrahedra; each octahedron

connects with six tetrahedra and each tetrahedron joins four

octahedra (Fig. 4). Sodium ions occupy two Wyckoff positions:

the Na1 ions belong to distorted [NaO6] octahedra and the

Na2 ions lie in the framework cavities, each formed by ten O

atoms. The rhombohedral NASICON phase was first investi-

gated in detail for terminal representatives of the solid-solu-

tion series NaZr2P3O12 (x = 0) and Na4Zr2Si3O12 (x = 3). In the

NaZr2P3O12 crystal structure only Na cations are located in

the octahedral Na1 positions, but in the [Zr2Si3O12]41�
1

framework the Na1 and Na2 positions are completely occu-

pied. An increase in temperature leads to a significant

decrease in the occupancy of the Na2 positions.

We used the crystallographic data for NASICON deter-

mined at 298 K (Kohler et al., 1983). The following steps

enabled us to construct the conduction pattern; this algorithm

is the same for any fast-cation conductor.

(i) The Voronoi–Dirichlet partition gives 20 nonequivalent

elementary voids in the [Zr2Si3O12]41�
1 framework; eight of

them are major and 12 are minor (Fig. 5a).

(ii) Insignificant elementary voids are then removed; all of

them are minor (ZC1, 2, 4, 6, 8, 9, 11 and 12). For instance, the

minor void ZC12 is insignificant, since there are zirconium

cations among its determining atoms (1Zr + 3O with R =

2.092 Å; Fig. 5b). Three of the four elementary channels

meeting in this void (ZC12—ZC1) are also insignificant,

because zirconium cations participate in their formation. After

removing the minor voids and renumbering the remaining
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Figure 4
The [M2T3O12]1 framework and three-dimensional conduction pattern in
the NASICON crystal structure.

Figure 5
Fragments of TOPOS windows with the NASICON adjacency matrix
containing (a) all elementary voids; (b) insignificant elementary void
ZC12 and insignificant elementary channels ZC12–ZC1; (c) only
significant voids and channels including probabilistic ones; (d) probabil-
istic channel ZC1–ZC2.



ones (ZC3 ! ZC1; ZC5 ! ZC2; ZC7 ! ZC3; ZC10 !

ZC4), the list becomes as shown in Fig. 5(c).

(iii) The probabilistic voids should be revealed in the next

step. If we consider the migration of Na+ cations at the

temperature of the X-ray experiment (298 K), we should

ignore such voids. If we are curious about the principal

possibility of cation migration at an even higher temperature,

the Rsd and G3 values for the sodium cation should be taken

from Table 1. In particular, the ZA8 and ZC1 voids (Fig. 5c)

are probabilistic since their Rsd values are smaller than those

for Na+. Note that the shapes of all the voids in Fig. 5(c) are

rather spherical (G3 < 0.1).

(iv) The probabilistic elementary channels should then be

determined among significant ones. Let us assume that the

typical Na+–O2– distance is equal to the sum of their ionic radii

and is estimated as Rca = 2.35 Å. Hence, a channel will be

probabilistic if its radius is smaller than Rca � 0.1Rca ’ 2.1 Å.

For instance, the ZC1–ZC2 channel is probabilistic (its radius

is too small, 1.875 < 2.1 Å; Fig. 5d). After removing it only one

(minor) channel (ZC1–ZA4) ends in ZC1. Thus, the ZC1 void

cannot be part of an infinite migration path and should be

ignored. As a result seven voids (ZA2, 7, 8; ZC1–4) were

removed; the final list of voids after renumbering (ZA3 !

ZA2; ZA4! ZA3; ZA5! ZA4; ZA6! ZA5) is given in

Table 2.

(v) Visualization and analysis of

migration paths in the program IsoCryst

of the TOPOS package shows that they

are infinite and three-dimensional (Fig.

4). Thus, the results obtained agree with

the three-dimensional conductivity

found in NASICON experimentally.

Moreover, since probabilistic elemen-

tary voids and channels do not partici-

pate in the migration paths one can

expect a high conductivity at the temperature of the X-ray

experiment, i.e. at room temperature. Also, the centres of the

elementary voids ZA2 and ZA1 (Table 2) nearly coincide with

the positions of two inequivalent Na cations which were

determined experimentally (Kohler et al., 1983): (0, 0, 0) and

(2/3, 0.9722, 0.5833). A detailed analysis of the conduction

pattern reveals the key role of the void ZA2 (Fig. 6); six

channels of the length 1.83 Å and radius 2.11 Å meet in this

void. At the same time the voids ZA3 and ZA5 play a

secondary role, connecting the close-spaced ZA1 voids

disordered over the special positions corresponding to Na

cations. ZA4 voids join the ZA1 and ZA2 voids together, and

can correspond to the temporary location sites of mobile ions

while passing through the channels.

3.2. The LIPHOS family Li3M2(PO4)3

Superionic conductors were independently discovered

among double lithium phosphates (LIPHOS), Li3M2(PO4)3

(M = Sc, Cr, Fe, In), by two research groups from Russia

(Genkina et al., 1983) and France (D’Yvoire et al., 1983). The

high conductivity of these materials is caused by mobile

lithium ions and amounts to 10�2 ��1 cm�1 at 573 K. As in

many other superionic conductors the high conductivity of the

Li3M2(PO4)3 materials is determined by the features of the

crystal structure: the framework is formed by the [PO4]

tetrahedra and [MO6] octahedra sharing vertices, and has a

network of cavities. As in NASICON each tetrahedron is

connected with four octahedra and each octahedron has

common vertices with six tetrahedra, but the topology of the

framework is not the same. The [M2P3O12]31�
1 frameworks

can have monoclinic or rhombohedral symmetry corre-

sponding to low- (�) or high-temperature (�) phases.

An analysis of the space distribution of cations in the

Li3Sc2(PO4)3 phases (Bykov et al., 1990; Suzuki et al., 1998;

Ivanov-Schits & Murin, 2000) showed that the preferable

direction for ion transport is [001], i.e. the X-ray investigations

confirmed the ionic conduction data. However, the question

why the maximum conductivity direction is [100], not [001], in

isostructural Li3Fe2(PO4)3 and Li3In2(PO4)3 is still unan-

swered. As was mentioned by Ivanov-Schits & Murin (2000),

‘ . . . at present there is no clear explanation of this fact . . .
Probably, real cation distributions in Li–Sc and Li–Fe phos-

phates are different since it is difficult to accurately locate

lithium ions in high-temperature phases. To resolve this

problem it is necessary to perform further precise investiga-
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Figure 6
A fragment of the migration path in NASICON. The lengths (Å) of the
elementary channels ZA1–ZA4 and ZA4–ZA2 are shown nearby.

Table 2
Final list of framework atoms and voids in the NASICON crystal structure.

Atom x y z Void x y z

O1 0.1855 (2) 0.1666 (1) 0.0850 (1) ZA1 0.6669 (1) 0.9663 (1) 0.5774 (1)
O2 0.1842 (1) 0.9828 (2) 0.1912 (1) ZA2 0.0000 0.0000 0.0000
Si 0.2969 (1) 0.0000 0.2500 ZA3 0.3592 (1) 0.3327 (1) 0.5686 (1)
Zr 0.0000 0.0000 0.1468 (1) ZA4 0.5375 (1) 0.8501 (1) 0.6493 (1)

ZA5 0.7168 (1) 0.0000 0.2500



tions of the physical properties of Li3M2(PO4)3 crystals

controlling composition, structure, and history of samples’.

Below we present additional data for an interpretation of this

contradiction.

We have analyzed in detail the crystal structures of

Li3M2(PO4)3 (M = Sc, Fe; Bykov et al., 1990; Suzuki et al.,

1998) for NASICON using the algorithm described above. In

the low-temperature form of �-Li3Sc2(PO4)3 there are 26

significant voids forming a three-dimensional conduction

pattern. After removing the probabilistic voids and channels

(Rca = 2.05 Å is applied for Li—O contacts) the two-dimen-

sional (110) channel network is separated, where lithium ions

pass most easily (Figs. 7a and b). The result obtained conforms

to the experimental conductivity measurements for �-

Li3Sc2(PO4)3 (Bykov et al., 1990), according to which

conductivity along [001] is the largest among the three main

crystallographic axes. This direction in fact lies inside the (110)

plane with the channels most accessible for cation migration.

At the same time one can also expect a high conductivity along

[1�110].

Our calculations have given a similar conduction pattern for

�-Li3Fe2(PO4)3, but the most accessible migration channels lie

in the (1�110) plane with the fast transport axes [110] and [001]

(Fig. 8). Thus, orientations of the conduction patterns in

Li3M2(PO4)3 (M = Sc, Fe) are really different and additional

conductivity measurements along the [110] and [1�110] direc-

tions are required to elucidate the above-mentioned contra-

diction in the anisotropy of the conductivity.

Table 3 lists the coordinates of Li cations, according to

Bykov et al. (1990) and Suzuki et al. (1998), compared with the

positions of the calculated void centres. It is clear that the

proposed method satisfactory fits the experimental data; the

discrepancies do not exceed 0.33 Å.

4. Concluding remarks

The results obtained show that the Voronoi–Dirichlet parti-

tion allows strict definitions of such characteristics of super-

ionic conductors as ‘void’, ‘channel’ and ‘migration path’, and

determines their geometrical and topological parameters. In

the proposed method the earlier approach of Fischer (1986) is

developed and formalized for cation solid electrolytes of any

complexity. The main advantages of the method over tradi-

tional ‘grid’ approaches (Thomas, 1991; Adams & Swenson,
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Figure 7
(a) Atom framework and two-dimensional conduction pattern (110) constructed with only significant elementary voids and non-probabilistic channels in
the crystal structure of �-Li3Sc2(PO4)3. (b) A projection of the two-dimensional conduction pattern along [110].

Table 3
Comparing the positions of the centres of the elementary voids ZA and the coordinates of Li atoms in the crystal structures of Li3M2(PO4)3 (M = Sc, Fe).

Atom/ void centre x y z R(Li–ZA) (Å) x y z R(Li–ZA) (Å)

�-Li3Sc2(PO4)3 (Suzuki et al., 1998) �-Li3Fe2(PO4)3 (Bykov et al., 1990)
Li1 0.2900 0.3230 0.2710 0.02 0.2950 0.3220 0.2760 0.03
ZA 0.2898 0.3216 0.2716 0.2945 0.3194 0.2752
Li2 0.5820 0.1950 0.4070 0.33 0.5770 0.1930 0.4210 0.28
ZA 0.5837 0.2063 0.4414 0.5721 0.2040 0.4498
Li3 0.9220 0.2460 0.2940 0.20 0.9120 0.2410 0.2970 0.30
ZA 0.9413 0.2394 0.3016 0.9433 0.2365 0.3098



2002; Küppers et al., 2006) are its independence of the system

of ionic radii, and the application of topological criteria when

determining the conduction pattern; the network of elemen-

tary channels follows the Voronoi–Dirichlet graph. An

important reasoning for the method’s reliability is its imple-

mentation as a computer program working in an automated

mode. Let us emphasize that the algorithm and basics of the

analysis are independent of the nature of the superionic

material; there are no principal obstacles to applying them in

the investigations of anion conductors or molecular

substances. A demonstration of these abilities is the objective

of a further study.
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Figure 8
A projection along [1�110] of the two-dimensional conduction pattern
constructed with only significant elementary voids and non-probabilistic
channels in the crystal structure of �-Li3Fe2(PO4)3.


